
Steffen Frey and Thomas Ertl
2016 New York Scientific Data Summit (NYSDS)
August 15th, 2016

Auto-Tuning Intermediate Representations
for In Situ Visualization

▪ data sizes increase, e.g.,
▪ large-scale supercomputer simulations
▪ high resolution acquisition devices
➡ compute-data gap
▪ storing (or moving) all data impractical/impossible
▪ consumes a lot of space, time and power
▪ … but just discarding data also not desirable

▪ approach: in-situ (on site) reduction of data
▪ process data as soon (and where) it is generated
▪ hybrid in situ visualization
▪ create intermediate representations (IR) immediately
▪ IR can be used for data exploration later

Motivation

2

Motivation

▪ IR for hybrid in situ visualization should
▪ … achieve a significant reduction in size
▪ … be producible quickly/efficiently
▪ … depict the data of interest
▪ … support interactive exploration

▪ IR generation inherently involves a trade-off
▪ typically tunable via parameters PM

▪ goal of this work: optimize parameters for IR generation

▪ analysis and quantification of their impact
▪ auto-tuning for different constraints (like time or data size)
▪ at the example of an IR for volume visualization

3

Data Size,
Generation Time,

…Quality,
Flexibility,

…
PM

Motivation - In Situ Visualization

▪ traditional procedure
▪ decoupled data generation and

visualization
▪ full (raw) data is stored
▪ storage/time/energy constraints limit

resolution of stored result data …
▪ … but full flexibility preserved for exploring/

analyzing stored data

4

generator node 0

result
 data

data
gener-
ation

generator node n-1

result
 data

data
gener-
ation

…

visualization node 0

imagevisual-
ization

visualization node m-1

imagevisual-
ization

…

storage

Motivation - In Situ Visualization

▪ in situ visualization w/ loose coupling
▪ concurrent data generation and visualization
▪ result data is processed immediately
▪ size: visualization results << raw data
▪ results become available during simulation run

▪ … but on separate resources
▪ high network load
▪ forced data conversion

5loose, tight and hybrid coupling classification according to [Riva et al.] Marzia Rivia, Luigi Caloria, Giuseppa Muscianisia, Vladimir Slavnicb “In-situ Visualization: State-of-the-art and Some Use Cases”, 2014.

generator node 0

result
 data

data
gener-
ation

generator node n-1

result
 data

data
gener-
ation

visualization node 0

imagevisual-
ization

visualization node m-1

imagevisual-
ization

…

…

Motivation - In Situ Visualization

▪ in situ visualization w/ tight coupling
▪ visualization runs on the same cluster node as

simulation (in-situ)
▪ shared data structures

▪ optimally no transfer or data conversion required
▪ space decomposition
▪ compute resources
▪ …

▪ the result are images generated by the visualization
▪ little flexibility for a posteriori exploration

6

generator-visualization node 0

result
 data image

data
gener-
ation

visual-

ization

generator-visualization node n-1

result
 data image

data
gener-
ation

visual-

ization

…

Motivation -
In Situ Visualization

▪ hybrid in situ visualization  
(via intermediate representations)
▪ visualization procedure split into two parts
1. transform data into IR
▪ tunable via parameters PM

2. render IR to generate image

▪ combines benefits of traditional method
and tight coupling

7

generator-visualization node 0

result
 data

intermediate
representation

(IR)

data
gener-
ation

IR trans-
formation

visualization node 0

imagerender
IR

storage / network

visualization node m-1

imagerender
IR

generator-visualization node n-1

result
 data

intermediate
representation

(IR)

data
gener-
ation

IR trans-
formation

…

…

PM

Examples for View-Dependent / Image-based IR
for Volume Visualization
▪ interactive viewing [Kageyama and Yamada]
▪ videos recorded different views

▪ image data bases [Ahrens et al.]
▪ store images created w/ different settings to image database
▪ supports content querying and composing new images

▪ proxy images [Tikhonova et al.]
▪ collection of proxy images containing different information
▪ (depth, different view, etc.)

▪ proxies are mixed and matched to create renderings

8[Tikhonova et al.] Tikhonova, A., Correa, C. D., & Ma, K.-L. (2010). Visualization by Proxy: A Novel Framework for Deferred Interaction with Volume Data. IEEE Transaction on Visualization and Computer Graphics, 16(6), 1551–1559.
[Ahrens et al.] Ahrens, J., Jourdain, S., O’leary, P., Pratchett, J., Rogers, D. H., & Petersen, M. (2014). An Image based Approach to Extreme Scale In Situ Visualization. SC ’14 Proceedings, 424–434.
[Kageyama and Yamada] Kageyama, A., & Yamada, T. (n.d.). An approach to exascale visualization: Interactive viewing of in-situ visualization. Computer Physics Communications, 79-85.

Volumetric Depth Images

9

between), and not volumetric representations.

III. FUNDAMENTALS

In this section, we derive VDIs starting from the volume
rendering integral (Sec. III-A), and subsequently discuss the
representation in detail (Sec. III-B).

A. Divisibility
The volume rendering integral [35] defines the color resulting

from compositing volume data to be

I(D) =

Z D

0
c(s)e

�
R D

s
⌧(t) dt

ds,

with c(s) := C(s)⌧(s) representing the premultiplied color
where C(s) depicts the radiance or color and ⌧(s) stands for
the attenuation of the sample s along a ray, with s ranging
from 0 (back) to D (front). Discretization with Riemann sums
by dividing [0, D] into N segments yields

I(D) ⇡ J(D) :=

NX

i=1

c(i)
NY

j=i+1

T (j), (1)

where c(i) := C(i)!(↵(i), �(i)) represents the discretized
premultiplied color of segment i, with !(↵(i), �(i)) represent-
ing the corrected opacity ↵(i), accounting for the potentially
varying segment (or step) size �(i), defined as follows [36]:

!(↵(i), �(i)) := 1�
�
1� ↵(i)

��(i)
, (2)

with T (j) := 1 � !(↵(j), �(j)) standing for the corrected
transmittance of segment j along the view direction, andQN

j=i+1 T (j) is the attenuation due to all segments in front of
segment i. Eq. 1 can be grouped into P so-called supersegments,
with sb(p) and sf (p) representing the index of the back and
front segment of supersegment p, respectively (see Fig. 2(a)):

J(D) =

PX

p=1

0

@

0

@
sf (p)X

i=sb(p)

c(i)

sf (p)Y

j=i+1

T (j)

1

A
NY

k=sf (p)+1

T (k)

1

A . (3)

Supersegment 1 is located at the back while supersegment P
is the frontmost one. Each supersegment features composited
premultiplied color cfb and transmittance T f

b :

cfb :=

fX

i=b

c(i)

fY

j=i+1

T (j),

T f
b :=

fY

j=b

T (j).

Eq. 3 can accordingly be rewritten as follows:

J(D) =

PX

p=1

c
sf (p)
sb(p)

PY

q=p+1

T
sf (q)
sb(q)

. (4)

Eq. 4 provides the basis for VDIs as it states that samplings
can be arbitrarily grouped and composited into continuous
segments of varying length without any loss in quality (cf.
Eq. 1). Varying step size is accounted for by !(·, ·), which will
be revisited for reusing supersegments for preview rendering
with different viewing parameters (Sec. V).

B. Volumetric Depth Images
Our Volumetric Depth Image representation saves a 2D

array of so-called supersegment lists (one per pixel, Fig. 2b).
Each supersegment stores color, opacity, and a pair of depth
values. A VDI further contains the modelview and projection
matrices used during their generation. Theoretically, if the
volume would be densely covered along a ray, only one depth
value per supersegment would be sufficient, as the depth of
the successor along the ray could be used to terminate a
supersegment. However, similar to empty space skipping in
raycasting [37], we aim not to generate supersegments for
regions with negligible impact. This saves memory and render
time, particularly because for many transfer functions and
datasets, transitions between dense and transparent regions are
common. A VDI can be seen as a generalization of an LDI,
as LDIs represent the special case where the bounding pair
of depth values are the same: sf = sb. Trivially, it can also
represent a standard image, e.g., from volume rendering, by
using one supersegment per pixel, ignoring the depth values.

IV. VOLUMETRIC DEPTH IMAGES FROM RAYCASTING

In this section, the generation of VDIs using a modified
version of a regular front-to-back raycaster (IV-A) is described.
Subsequently, the criterion for merging segments into super-
segments is discussed (IV-B).

A. Supersegment Generation with Raycasting

Algorithm 1 Generation of supersegments using raycasting.
1: function SUPERSEGMENTGENERATION
2: c (0, 0, 0), T 1, p �1
3: for i = 1! N + 1 do . step along ray
4: g �(�, C,↵, C(i),↵(i)) . new supersegment?

(Eq. 5)
5: e (↵(i) = 0 ^ ↵(i� 1) 6= 0)

6: if p 6= �1 ^ (g _ e _ i = N + 1) then . close old
supersegment

7: sb(p) min(i, N)

8: ↵
sf (p)
sb(p)

 1� T

9: C
sf (p)
sb(p)

 c/↵
sf (p)
sb(p)

10: if (g _↵(i� 1) = 0)^ i 6= N +1^↵(i) > 0 then
. start new supersegment

11: p p+ 1, sf (p) i
12: c (0, 0, 0), T 1

13: c T · ↵(i)c(i), T T · (1� ↵(i))

A modified front-to-back raycasting procedure for creating
supersegments is depicted in Alg. 1. The main difference
to standard raycasting is that color and opacity are not
composited over the whole ray but only within supersegments.
The segmentation criterion � (Line 4, see Sec. IV-B (Eq. 5)
for details) returns true if the old supersegment should be
terminated (Lines 11–12) and a new one should be started
(Lines 7–9). Additionally, the current supersegment is finalized

S. Frey, F. Sadlo, and T. Ertl. Explorable volumetric depth images from raycasting, SIBGRAPI, 2013.

ray

image volumecamera

discretized volume rendering equation

Volumetric Depth Images
▪ volumetric depth images (VDIs) used as IR
▪ directly based on volumetric raycasting
▪ send one ray through each pixel
▪ accumulate color (c) and opacity (T) along ray

9

between), and not volumetric representations.

III. FUNDAMENTALS

In this section, we derive VDIs starting from the volume
rendering integral (Sec. III-A), and subsequently discuss the
representation in detail (Sec. III-B).

A. Divisibility
The volume rendering integral [35] defines the color resulting

from compositing volume data to be

I(D) =

Z D

0
c(s)e

�
R D

s
⌧(t) dt

ds,

with c(s) := C(s)⌧(s) representing the premultiplied color
where C(s) depicts the radiance or color and ⌧(s) stands for
the attenuation of the sample s along a ray, with s ranging
from 0 (back) to D (front). Discretization with Riemann sums
by dividing [0, D] into N segments yields

I(D) ⇡ J(D) :=

NX

i=1

c(i)
NY

j=i+1

T (j), (1)

where c(i) := C(i)!(↵(i), �(i)) represents the discretized
premultiplied color of segment i, with !(↵(i), �(i)) represent-
ing the corrected opacity ↵(i), accounting for the potentially
varying segment (or step) size �(i), defined as follows [36]:

!(↵(i), �(i)) := 1�
�
1� ↵(i)

��(i)
, (2)

with T (j) := 1 � !(↵(j), �(j)) standing for the corrected
transmittance of segment j along the view direction, andQN

j=i+1 T (j) is the attenuation due to all segments in front of
segment i. Eq. 1 can be grouped into P so-called supersegments,
with sb(p) and sf (p) representing the index of the back and
front segment of supersegment p, respectively (see Fig. 2(a)):

J(D) =

PX

p=1

0

@

0

@
sf (p)X

i=sb(p)

c(i)

sf (p)Y

j=i+1

T (j)

1

A
NY

k=sf (p)+1

T (k)

1

A . (3)

Supersegment 1 is located at the back while supersegment P
is the frontmost one. Each supersegment features composited
premultiplied color cfb and transmittance T f

b :

cfb :=

fX

i=b

c(i)

fY

j=i+1

T (j),

T f
b :=

fY

j=b

T (j).

Eq. 3 can accordingly be rewritten as follows:

J(D) =

PX

p=1

c
sf (p)
sb(p)

PY

q=p+1

T
sf (q)
sb(q)

. (4)

Eq. 4 provides the basis for VDIs as it states that samplings
can be arbitrarily grouped and composited into continuous
segments of varying length without any loss in quality (cf.
Eq. 1). Varying step size is accounted for by !(·, ·), which will
be revisited for reusing supersegments for preview rendering
with different viewing parameters (Sec. V).

B. Volumetric Depth Images
Our Volumetric Depth Image representation saves a 2D

array of so-called supersegment lists (one per pixel, Fig. 2b).
Each supersegment stores color, opacity, and a pair of depth
values. A VDI further contains the modelview and projection
matrices used during their generation. Theoretically, if the
volume would be densely covered along a ray, only one depth
value per supersegment would be sufficient, as the depth of
the successor along the ray could be used to terminate a
supersegment. However, similar to empty space skipping in
raycasting [37], we aim not to generate supersegments for
regions with negligible impact. This saves memory and render
time, particularly because for many transfer functions and
datasets, transitions between dense and transparent regions are
common. A VDI can be seen as a generalization of an LDI,
as LDIs represent the special case where the bounding pair
of depth values are the same: sf = sb. Trivially, it can also
represent a standard image, e.g., from volume rendering, by
using one supersegment per pixel, ignoring the depth values.

IV. VOLUMETRIC DEPTH IMAGES FROM RAYCASTING

In this section, the generation of VDIs using a modified
version of a regular front-to-back raycaster (IV-A) is described.
Subsequently, the criterion for merging segments into super-
segments is discussed (IV-B).

A. Supersegment Generation with Raycasting

Algorithm 1 Generation of supersegments using raycasting.
1: function SUPERSEGMENTGENERATION
2: c (0, 0, 0), T 1, p �1
3: for i = 1! N + 1 do . step along ray
4: g �(�, C,↵, C(i),↵(i)) . new supersegment?

(Eq. 5)
5: e (↵(i) = 0 ^ ↵(i� 1) 6= 0)

6: if p 6= �1 ^ (g _ e _ i = N + 1) then . close old
supersegment

7: sb(p) min(i, N)

8: ↵
sf (p)
sb(p)

 1� T

9: C
sf (p)
sb(p)

 c/↵
sf (p)
sb(p)

10: if (g _↵(i� 1) = 0)^ i 6= N +1^↵(i) > 0 then
. start new supersegment

11: p p+ 1, sf (p) i
12: c (0, 0, 0), T 1

13: c T · ↵(i)c(i), T T · (1� ↵(i))

A modified front-to-back raycasting procedure for creating
supersegments is depicted in Alg. 1. The main difference
to standard raycasting is that color and opacity are not
composited over the whole ray but only within supersegments.
The segmentation criterion � (Line 4, see Sec. IV-B (Eq. 5)
for details) returns true if the old supersegment should be
terminated (Lines 11–12) and a new one should be started
(Lines 7–9). Additionally, the current supersegment is finalized

S. Frey, F. Sadlo, and T. Ertl. Explorable volumetric depth images from raycasting, SIBGRAPI, 2013.

ray

image volumecamera

c(1)
T(1)

c(2)
T(2)

c(3)
T(3)

c(4)
T(4)

c(5)
T(5)

discretized volume rendering equation

Volumetric Depth Images
▪ volumetric depth images (VDIs) used as IR
▪ directly based on volumetric raycasting
▪ send one ray through each pixel
▪ accumulate color (c) and opacity (T) along ray

9

between), and not volumetric representations.

III. FUNDAMENTALS

In this section, we derive VDIs starting from the volume
rendering integral (Sec. III-A), and subsequently discuss the
representation in detail (Sec. III-B).

A. Divisibility
The volume rendering integral [35] defines the color resulting

from compositing volume data to be

I(D) =

Z D

0
c(s)e

�
R D

s
⌧(t) dt

ds,

with c(s) := C(s)⌧(s) representing the premultiplied color
where C(s) depicts the radiance or color and ⌧(s) stands for
the attenuation of the sample s along a ray, with s ranging
from 0 (back) to D (front). Discretization with Riemann sums
by dividing [0, D] into N segments yields

I(D) ⇡ J(D) :=

NX

i=1

c(i)
NY

j=i+1

T (j), (1)

where c(i) := C(i)!(↵(i), �(i)) represents the discretized
premultiplied color of segment i, with !(↵(i), �(i)) represent-
ing the corrected opacity ↵(i), accounting for the potentially
varying segment (or step) size �(i), defined as follows [36]:

!(↵(i), �(i)) := 1�
�
1� ↵(i)

��(i)
, (2)

with T (j) := 1 � !(↵(j), �(j)) standing for the corrected
transmittance of segment j along the view direction, andQN

j=i+1 T (j) is the attenuation due to all segments in front of
segment i. Eq. 1 can be grouped into P so-called supersegments,
with sb(p) and sf (p) representing the index of the back and
front segment of supersegment p, respectively (see Fig. 2(a)):

J(D) =

PX

p=1

0

@

0

@
sf (p)X

i=sb(p)

c(i)

sf (p)Y

j=i+1

T (j)

1

A
NY

k=sf (p)+1

T (k)

1

A . (3)

Supersegment 1 is located at the back while supersegment P
is the frontmost one. Each supersegment features composited
premultiplied color cfb and transmittance T f

b :

cfb :=

fX

i=b

c(i)

fY

j=i+1

T (j),

T f
b :=

fY

j=b

T (j).

Eq. 3 can accordingly be rewritten as follows:

J(D) =

PX

p=1

c
sf (p)
sb(p)

PY

q=p+1

T
sf (q)
sb(q)

. (4)

Eq. 4 provides the basis for VDIs as it states that samplings
can be arbitrarily grouped and composited into continuous
segments of varying length without any loss in quality (cf.
Eq. 1). Varying step size is accounted for by !(·, ·), which will
be revisited for reusing supersegments for preview rendering
with different viewing parameters (Sec. V).

B. Volumetric Depth Images
Our Volumetric Depth Image representation saves a 2D

array of so-called supersegment lists (one per pixel, Fig. 2b).
Each supersegment stores color, opacity, and a pair of depth
values. A VDI further contains the modelview and projection
matrices used during their generation. Theoretically, if the
volume would be densely covered along a ray, only one depth
value per supersegment would be sufficient, as the depth of
the successor along the ray could be used to terminate a
supersegment. However, similar to empty space skipping in
raycasting [37], we aim not to generate supersegments for
regions with negligible impact. This saves memory and render
time, particularly because for many transfer functions and
datasets, transitions between dense and transparent regions are
common. A VDI can be seen as a generalization of an LDI,
as LDIs represent the special case where the bounding pair
of depth values are the same: sf = sb. Trivially, it can also
represent a standard image, e.g., from volume rendering, by
using one supersegment per pixel, ignoring the depth values.

IV. VOLUMETRIC DEPTH IMAGES FROM RAYCASTING

In this section, the generation of VDIs using a modified
version of a regular front-to-back raycaster (IV-A) is described.
Subsequently, the criterion for merging segments into super-
segments is discussed (IV-B).

A. Supersegment Generation with Raycasting

Algorithm 1 Generation of supersegments using raycasting.
1: function SUPERSEGMENTGENERATION
2: c (0, 0, 0), T 1, p �1
3: for i = 1! N + 1 do . step along ray
4: g �(�, C,↵, C(i),↵(i)) . new supersegment?

(Eq. 5)
5: e (↵(i) = 0 ^ ↵(i� 1) 6= 0)

6: if p 6= �1 ^ (g _ e _ i = N + 1) then . close old
supersegment

7: sb(p) min(i, N)

8: ↵
sf (p)
sb(p)

 1� T

9: C
sf (p)
sb(p)

 c/↵
sf (p)
sb(p)

10: if (g _↵(i� 1) = 0)^ i 6= N +1^↵(i) > 0 then
. start new supersegment

11: p p+ 1, sf (p) i
12: c (0, 0, 0), T 1

13: c T · ↵(i)c(i), T T · (1� ↵(i))

A modified front-to-back raycasting procedure for creating
supersegments is depicted in Alg. 1. The main difference
to standard raycasting is that color and opacity are not
composited over the whole ray but only within supersegments.
The segmentation criterion � (Line 4, see Sec. IV-B (Eq. 5)
for details) returns true if the old supersegment should be
terminated (Lines 11–12) and a new one should be started
(Lines 7–9). Additionally, the current supersegment is finalized

S. Frey, F. Sadlo, and T. Ertl. Explorable volumetric depth images from raycasting, SIBGRAPI, 2013.

ray

image volumecamera

c(1)
T(1)

c(2)
T(2)

c(3)
T(3)

c(4)
T(4)

c(5)
T(5)

discretized volume rendering equation

Volumetric Depth Images
▪ volumetric depth images (VDIs) used as IR
▪ directly based on volumetric raycasting
▪ send one ray through each pixel
▪ accumulate color (c) and opacity (T) along ray

▪ VDIs: partial accumulation of subsequent
samples into segments
▪ represented by RGBA + 2 depth values
▪ can be used for lossy volume reconstruction

9S. Frey, F. Sadlo, and T. Ertl. Explorable volumetric depth images from raycasting, SIBGRAPI, 2013.

ray

image volumecamera

c(1)
T(1)

c(2)
T(2)

c(3)
T(3)

c(4)
T(4)

c(5)
T(5)

discretized volume rendering equation

RGBA Color

Start End

RGBA Color

Start End

VDI representation

between), and not volumetric representations.

III. FUNDAMENTALS

In this section, we derive VDIs starting from the volume
rendering integral (Sec. III-A), and subsequently discuss the
representation in detail (Sec. III-B).

A. Divisibility
The volume rendering integral [35] defines the color resulting

from compositing volume data to be

I(D) =

Z D

0
c(s)e

�
R D

s
⌧(t) dt

ds,

with c(s) := C(s)⌧(s) representing the premultiplied color
where C(s) depicts the radiance or color and ⌧(s) stands for
the attenuation of the sample s along a ray, with s ranging
from 0 (back) to D (front). Discretization with Riemann sums
by dividing [0, D] into N segments yields

I(D) ⇡ J(D) :=

NX

i=1

c(i)
NY

j=i+1

T (j), (1)

where c(i) := C(i)!(↵(i), �(i)) represents the discretized
premultiplied color of segment i, with !(↵(i), �(i)) represent-
ing the corrected opacity ↵(i), accounting for the potentially
varying segment (or step) size �(i), defined as follows [36]:

!(↵(i), �(i)) := 1�
�
1� ↵(i)

��(i)
, (2)

with T (j) := 1 � !(↵(j), �(j)) standing for the corrected
transmittance of segment j along the view direction, andQN

j=i+1 T (j) is the attenuation due to all segments in front of
segment i. Eq. 1 can be grouped into P so-called supersegments,
with sb(p) and sf (p) representing the index of the back and
front segment of supersegment p, respectively (see Fig. 2(a)):

J(D) =

PX

p=1

0

@

0

@
sf (p)X

i=sb(p)

c(i)

sf (p)Y

j=i+1

T (j)

1

A
NY

k=sf (p)+1

T (k)

1

A . (3)

Supersegment 1 is located at the back while supersegment P
is the frontmost one. Each supersegment features composited
premultiplied color cfb and transmittance T f

b :

cfb :=

fX

i=b

c(i)

fY

j=i+1

T (j),

T f
b :=

fY

j=b

T (j).

Eq. 3 can accordingly be rewritten as follows:

J(D) =

PX

p=1

c
sf (p)
sb(p)

PY

q=p+1

T
sf (q)
sb(q)

. (4)

Eq. 4 provides the basis for VDIs as it states that samplings
can be arbitrarily grouped and composited into continuous
segments of varying length without any loss in quality (cf.
Eq. 1). Varying step size is accounted for by !(·, ·), which will
be revisited for reusing supersegments for preview rendering
with different viewing parameters (Sec. V).

B. Volumetric Depth Images
Our Volumetric Depth Image representation saves a 2D

array of so-called supersegment lists (one per pixel, Fig. 2b).
Each supersegment stores color, opacity, and a pair of depth
values. A VDI further contains the modelview and projection
matrices used during their generation. Theoretically, if the
volume would be densely covered along a ray, only one depth
value per supersegment would be sufficient, as the depth of
the successor along the ray could be used to terminate a
supersegment. However, similar to empty space skipping in
raycasting [37], we aim not to generate supersegments for
regions with negligible impact. This saves memory and render
time, particularly because for many transfer functions and
datasets, transitions between dense and transparent regions are
common. A VDI can be seen as a generalization of an LDI,
as LDIs represent the special case where the bounding pair
of depth values are the same: sf = sb. Trivially, it can also
represent a standard image, e.g., from volume rendering, by
using one supersegment per pixel, ignoring the depth values.

IV. VOLUMETRIC DEPTH IMAGES FROM RAYCASTING

In this section, the generation of VDIs using a modified
version of a regular front-to-back raycaster (IV-A) is described.
Subsequently, the criterion for merging segments into super-
segments is discussed (IV-B).

A. Supersegment Generation with Raycasting

Algorithm 1 Generation of supersegments using raycasting.
1: function SUPERSEGMENTGENERATION
2: c (0, 0, 0), T 1, p �1
3: for i = 1! N + 1 do . step along ray
4: g �(�, C,↵, C(i),↵(i)) . new supersegment?

(Eq. 5)
5: e (↵(i) = 0 ^ ↵(i� 1) 6= 0)

6: if p 6= �1 ^ (g _ e _ i = N + 1) then . close old
supersegment

7: sb(p) min(i, N)

8: ↵
sf (p)
sb(p)

 1� T

9: C
sf (p)
sb(p)

 c/↵
sf (p)
sb(p)

10: if (g _↵(i� 1) = 0)^ i 6= N +1^↵(i) > 0 then
. start new supersegment

11: p p+ 1, sf (p) i
12: c (0, 0, 0), T 1

13: c T · ↵(i)c(i), T T · (1� ↵(i))

A modified front-to-back raycasting procedure for creating
supersegments is depicted in Alg. 1. The main difference
to standard raycasting is that color and opacity are not
composited over the whole ray but only within supersegments.
The segmentation criterion � (Line 4, see Sec. IV-B (Eq. 5)
for details) returns true if the old supersegment should be
terminated (Lines 11–12) and a new one should be started
(Lines 7–9). Additionally, the current supersegment is finalized

Volumetric Depth Images
▪ volumetric depth images (VDIs) used as IR
▪ directly based on volumetric raycasting
▪ send one ray through each pixel
▪ accumulate color (c) and opacity (T) along ray

▪ VDIs: partial accumulation of subsequent
samples into segments
▪ represented by RGBA + 2 depth values
▪ can be used for lossy volume reconstruction

▪ two parameters in PM
▪ merge threshold 𝝲: difference between  

segment and sample’s RGBA color
▪ r2 rays traced (image resolution)

9S. Frey, F. Sadlo, and T. Ertl. Explorable volumetric depth images from raycasting, SIBGRAPI, 2013.

ray

image volumecamera

c(1)
T(1)

c(2)
T(2)

c(3)
T(3)

c(4)
T(4)

c(5)
T(5)

discretized volume rendering equation

RGBA Color

Start End

RGBA Color

Start End

VDI representation

between), and not volumetric representations.

III. FUNDAMENTALS

In this section, we derive VDIs starting from the volume
rendering integral (Sec. III-A), and subsequently discuss the
representation in detail (Sec. III-B).

A. Divisibility
The volume rendering integral [35] defines the color resulting

from compositing volume data to be

I(D) =

Z D

0
c(s)e

�
R D

s
⌧(t) dt

ds,

with c(s) := C(s)⌧(s) representing the premultiplied color
where C(s) depicts the radiance or color and ⌧(s) stands for
the attenuation of the sample s along a ray, with s ranging
from 0 (back) to D (front). Discretization with Riemann sums
by dividing [0, D] into N segments yields

I(D) ⇡ J(D) :=

NX

i=1

c(i)
NY

j=i+1

T (j), (1)

where c(i) := C(i)!(↵(i), �(i)) represents the discretized
premultiplied color of segment i, with !(↵(i), �(i)) represent-
ing the corrected opacity ↵(i), accounting for the potentially
varying segment (or step) size �(i), defined as follows [36]:

!(↵(i), �(i)) := 1�
�
1� ↵(i)

��(i)
, (2)

with T (j) := 1 � !(↵(j), �(j)) standing for the corrected
transmittance of segment j along the view direction, andQN

j=i+1 T (j) is the attenuation due to all segments in front of
segment i. Eq. 1 can be grouped into P so-called supersegments,
with sb(p) and sf (p) representing the index of the back and
front segment of supersegment p, respectively (see Fig. 2(a)):

J(D) =

PX

p=1

0

@

0

@
sf (p)X

i=sb(p)

c(i)

sf (p)Y

j=i+1

T (j)

1

A
NY

k=sf (p)+1

T (k)

1

A . (3)

Supersegment 1 is located at the back while supersegment P
is the frontmost one. Each supersegment features composited
premultiplied color cfb and transmittance T f

b :

cfb :=

fX

i=b

c(i)

fY

j=i+1

T (j),

T f
b :=

fY

j=b

T (j).

Eq. 3 can accordingly be rewritten as follows:

J(D) =

PX

p=1

c
sf (p)
sb(p)

PY

q=p+1

T
sf (q)
sb(q)

. (4)

Eq. 4 provides the basis for VDIs as it states that samplings
can be arbitrarily grouped and composited into continuous
segments of varying length without any loss in quality (cf.
Eq. 1). Varying step size is accounted for by !(·, ·), which will
be revisited for reusing supersegments for preview rendering
with different viewing parameters (Sec. V).

B. Volumetric Depth Images
Our Volumetric Depth Image representation saves a 2D

array of so-called supersegment lists (one per pixel, Fig. 2b).
Each supersegment stores color, opacity, and a pair of depth
values. A VDI further contains the modelview and projection
matrices used during their generation. Theoretically, if the
volume would be densely covered along a ray, only one depth
value per supersegment would be sufficient, as the depth of
the successor along the ray could be used to terminate a
supersegment. However, similar to empty space skipping in
raycasting [37], we aim not to generate supersegments for
regions with negligible impact. This saves memory and render
time, particularly because for many transfer functions and
datasets, transitions between dense and transparent regions are
common. A VDI can be seen as a generalization of an LDI,
as LDIs represent the special case where the bounding pair
of depth values are the same: sf = sb. Trivially, it can also
represent a standard image, e.g., from volume rendering, by
using one supersegment per pixel, ignoring the depth values.

IV. VOLUMETRIC DEPTH IMAGES FROM RAYCASTING

In this section, the generation of VDIs using a modified
version of a regular front-to-back raycaster (IV-A) is described.
Subsequently, the criterion for merging segments into super-
segments is discussed (IV-B).

A. Supersegment Generation with Raycasting

Algorithm 1 Generation of supersegments using raycasting.
1: function SUPERSEGMENTGENERATION
2: c (0, 0, 0), T 1, p �1
3: for i = 1! N + 1 do . step along ray
4: g �(�, C,↵, C(i),↵(i)) . new supersegment?

(Eq. 5)
5: e (↵(i) = 0 ^ ↵(i� 1) 6= 0)

6: if p 6= �1 ^ (g _ e _ i = N + 1) then . close old
supersegment

7: sb(p) min(i, N)

8: ↵
sf (p)
sb(p)

 1� T

9: C
sf (p)
sb(p)

 c/↵
sf (p)
sb(p)

10: if (g _↵(i� 1) = 0)^ i 6= N +1^↵(i) > 0 then
. start new supersegment

11: p p+ 1, sf (p) i
12: c (0, 0, 0), T 1

13: c T · ↵(i)c(i), T T · (1� ↵(i))

A modified front-to-back raycasting procedure for creating
supersegments is depicted in Alg. 1. The main difference
to standard raycasting is that color and opacity are not
composited over the whole ray but only within supersegments.
The segmentation criterion � (Line 4, see Sec. IV-B (Eq. 5)
for details) returns true if the old supersegment should be
terminated (Lines 11–12) and a new one should be started
(Lines 7–9). Additionally, the current supersegment is finalized

Volumetric Depth Images
▪ volumetric depth images (VDIs) used as IR
▪ directly based on volumetric raycasting
▪ send one ray through each pixel
▪ accumulate color (c) and opacity (T) along ray

▪ VDIs: partial accumulation of subsequent
samples into segments
▪ represented by RGBA + 2 depth values
▪ can be used for lossy volume reconstruction

▪ two parameters in PM
▪ merge threshold 𝝲: difference between  

segment and sample’s RGBA color
▪ r2 rays traced (image resolution)

9S. Frey, F. Sadlo, and T. Ertl. Explorable volumetric depth images from raycasting, SIBGRAPI, 2013.

ray

image volumecamera

c(1)
T(1)

c(2)
T(2)

c(3)
T(3)

c(4)
T(4)

c(5)
T(5)

discretized volume rendering equation

RGBA Color

Start End

RGBA Color

Start End

VDI representation

between), and not volumetric representations.

III. FUNDAMENTALS

In this section, we derive VDIs starting from the volume
rendering integral (Sec. III-A), and subsequently discuss the
representation in detail (Sec. III-B).

A. Divisibility
The volume rendering integral [35] defines the color resulting

from compositing volume data to be

I(D) =

Z D

0
c(s)e

�
R D

s
⌧(t) dt

ds,

with c(s) := C(s)⌧(s) representing the premultiplied color
where C(s) depicts the radiance or color and ⌧(s) stands for
the attenuation of the sample s along a ray, with s ranging
from 0 (back) to D (front). Discretization with Riemann sums
by dividing [0, D] into N segments yields

I(D) ⇡ J(D) :=

NX

i=1

c(i)
NY

j=i+1

T (j), (1)

where c(i) := C(i)!(↵(i), �(i)) represents the discretized
premultiplied color of segment i, with !(↵(i), �(i)) represent-
ing the corrected opacity ↵(i), accounting for the potentially
varying segment (or step) size �(i), defined as follows [36]:

!(↵(i), �(i)) := 1�
�
1� ↵(i)

��(i)
, (2)

with T (j) := 1 � !(↵(j), �(j)) standing for the corrected
transmittance of segment j along the view direction, andQN

j=i+1 T (j) is the attenuation due to all segments in front of
segment i. Eq. 1 can be grouped into P so-called supersegments,
with sb(p) and sf (p) representing the index of the back and
front segment of supersegment p, respectively (see Fig. 2(a)):

J(D) =

PX

p=1

0

@

0

@
sf (p)X

i=sb(p)

c(i)

sf (p)Y

j=i+1

T (j)

1

A
NY

k=sf (p)+1

T (k)

1

A . (3)

Supersegment 1 is located at the back while supersegment P
is the frontmost one. Each supersegment features composited
premultiplied color cfb and transmittance T f

b :

cfb :=

fX

i=b

c(i)

fY

j=i+1

T (j),

T f
b :=

fY

j=b

T (j).

Eq. 3 can accordingly be rewritten as follows:

J(D) =

PX

p=1

c
sf (p)
sb(p)

PY

q=p+1

T
sf (q)
sb(q)

. (4)

Eq. 4 provides the basis for VDIs as it states that samplings
can be arbitrarily grouped and composited into continuous
segments of varying length without any loss in quality (cf.
Eq. 1). Varying step size is accounted for by !(·, ·), which will
be revisited for reusing supersegments for preview rendering
with different viewing parameters (Sec. V).

B. Volumetric Depth Images
Our Volumetric Depth Image representation saves a 2D

array of so-called supersegment lists (one per pixel, Fig. 2b).
Each supersegment stores color, opacity, and a pair of depth
values. A VDI further contains the modelview and projection
matrices used during their generation. Theoretically, if the
volume would be densely covered along a ray, only one depth
value per supersegment would be sufficient, as the depth of
the successor along the ray could be used to terminate a
supersegment. However, similar to empty space skipping in
raycasting [37], we aim not to generate supersegments for
regions with negligible impact. This saves memory and render
time, particularly because for many transfer functions and
datasets, transitions between dense and transparent regions are
common. A VDI can be seen as a generalization of an LDI,
as LDIs represent the special case where the bounding pair
of depth values are the same: sf = sb. Trivially, it can also
represent a standard image, e.g., from volume rendering, by
using one supersegment per pixel, ignoring the depth values.

IV. VOLUMETRIC DEPTH IMAGES FROM RAYCASTING

In this section, the generation of VDIs using a modified
version of a regular front-to-back raycaster (IV-A) is described.
Subsequently, the criterion for merging segments into super-
segments is discussed (IV-B).

A. Supersegment Generation with Raycasting

Algorithm 1 Generation of supersegments using raycasting.
1: function SUPERSEGMENTGENERATION
2: c (0, 0, 0), T 1, p �1
3: for i = 1! N + 1 do . step along ray
4: g �(�, C,↵, C(i),↵(i)) . new supersegment?

(Eq. 5)
5: e (↵(i) = 0 ^ ↵(i� 1) 6= 0)

6: if p 6= �1 ^ (g _ e _ i = N + 1) then . close old
supersegment

7: sb(p) min(i, N)

8: ↵
sf (p)
sb(p)

 1� T

9: C
sf (p)
sb(p)

 c/↵
sf (p)
sb(p)

10: if (g _↵(i� 1) = 0)^ i 6= N +1^↵(i) > 0 then
. start new supersegment

11: p p+ 1, sf (p) i
12: c (0, 0, 0), T 1

13: c T · ↵(i)c(i), T T · (1� ↵(i))

A modified front-to-back raycasting procedure for creating
supersegments is depicted in Alg. 1. The main difference
to standard raycasting is that color and opacity are not
composited over the whole ray but only within supersegments.
The segmentation criterion � (Line 4, see Sec. IV-B (Eq. 5)
for details) returns true if the old supersegment should be
terminated (Lines 11–12) and a new one should be started
(Lines 7–9). Additionally, the current supersegment is finalized

< 𝝲 ?

Volumetric Depth Images
▪ volumetric depth images (VDIs) used as IR
▪ directly based on volumetric raycasting
▪ send one ray through each pixel
▪ accumulate color (c) and opacity (T) along ray

▪ VDIs: partial accumulation of subsequent
samples into segments
▪ represented by RGBA + 2 depth values
▪ can be used for lossy volume reconstruction

▪ two parameters in PM
▪ merge threshold 𝝲: difference between  

segment and sample’s RGBA color
▪ r2 rays traced (image resolution)

9S. Frey, F. Sadlo, and T. Ertl. Explorable volumetric depth images from raycasting, SIBGRAPI, 2013.

ray

image volumecamera

c(1)
T(1)

c(2)
T(2)

c(3)
T(3)

c(4)
T(4)

c(5)
T(5)

discretized volume rendering equation

RGBA Color

Start End

RGBA Color

Start End

VDI representation

between), and not volumetric representations.

III. FUNDAMENTALS

In this section, we derive VDIs starting from the volume
rendering integral (Sec. III-A), and subsequently discuss the
representation in detail (Sec. III-B).

A. Divisibility
The volume rendering integral [35] defines the color resulting

from compositing volume data to be

I(D) =

Z D

0
c(s)e

�
R D

s
⌧(t) dt

ds,

with c(s) := C(s)⌧(s) representing the premultiplied color
where C(s) depicts the radiance or color and ⌧(s) stands for
the attenuation of the sample s along a ray, with s ranging
from 0 (back) to D (front). Discretization with Riemann sums
by dividing [0, D] into N segments yields

I(D) ⇡ J(D) :=

NX

i=1

c(i)
NY

j=i+1

T (j), (1)

where c(i) := C(i)!(↵(i), �(i)) represents the discretized
premultiplied color of segment i, with !(↵(i), �(i)) represent-
ing the corrected opacity ↵(i), accounting for the potentially
varying segment (or step) size �(i), defined as follows [36]:

!(↵(i), �(i)) := 1�
�
1� ↵(i)

��(i)
, (2)

with T (j) := 1 � !(↵(j), �(j)) standing for the corrected
transmittance of segment j along the view direction, andQN

j=i+1 T (j) is the attenuation due to all segments in front of
segment i. Eq. 1 can be grouped into P so-called supersegments,
with sb(p) and sf (p) representing the index of the back and
front segment of supersegment p, respectively (see Fig. 2(a)):

J(D) =

PX

p=1

0

@

0

@
sf (p)X

i=sb(p)

c(i)

sf (p)Y

j=i+1

T (j)

1

A
NY

k=sf (p)+1

T (k)

1

A . (3)

Supersegment 1 is located at the back while supersegment P
is the frontmost one. Each supersegment features composited
premultiplied color cfb and transmittance T f

b :

cfb :=

fX

i=b

c(i)

fY

j=i+1

T (j),

T f
b :=

fY

j=b

T (j).

Eq. 3 can accordingly be rewritten as follows:

J(D) =

PX

p=1

c
sf (p)
sb(p)

PY

q=p+1

T
sf (q)
sb(q)

. (4)

Eq. 4 provides the basis for VDIs as it states that samplings
can be arbitrarily grouped and composited into continuous
segments of varying length without any loss in quality (cf.
Eq. 1). Varying step size is accounted for by !(·, ·), which will
be revisited for reusing supersegments for preview rendering
with different viewing parameters (Sec. V).

B. Volumetric Depth Images
Our Volumetric Depth Image representation saves a 2D

array of so-called supersegment lists (one per pixel, Fig. 2b).
Each supersegment stores color, opacity, and a pair of depth
values. A VDI further contains the modelview and projection
matrices used during their generation. Theoretically, if the
volume would be densely covered along a ray, only one depth
value per supersegment would be sufficient, as the depth of
the successor along the ray could be used to terminate a
supersegment. However, similar to empty space skipping in
raycasting [37], we aim not to generate supersegments for
regions with negligible impact. This saves memory and render
time, particularly because for many transfer functions and
datasets, transitions between dense and transparent regions are
common. A VDI can be seen as a generalization of an LDI,
as LDIs represent the special case where the bounding pair
of depth values are the same: sf = sb. Trivially, it can also
represent a standard image, e.g., from volume rendering, by
using one supersegment per pixel, ignoring the depth values.

IV. VOLUMETRIC DEPTH IMAGES FROM RAYCASTING

In this section, the generation of VDIs using a modified
version of a regular front-to-back raycaster (IV-A) is described.
Subsequently, the criterion for merging segments into super-
segments is discussed (IV-B).

A. Supersegment Generation with Raycasting

Algorithm 1 Generation of supersegments using raycasting.
1: function SUPERSEGMENTGENERATION
2: c (0, 0, 0), T 1, p �1
3: for i = 1! N + 1 do . step along ray
4: g �(�, C,↵, C(i),↵(i)) . new supersegment?

(Eq. 5)
5: e (↵(i) = 0 ^ ↵(i� 1) 6= 0)

6: if p 6= �1 ^ (g _ e _ i = N + 1) then . close old
supersegment

7: sb(p) min(i, N)

8: ↵
sf (p)
sb(p)

 1� T

9: C
sf (p)
sb(p)

 c/↵
sf (p)
sb(p)

10: if (g _↵(i� 1) = 0)^ i 6= N +1^↵(i) > 0 then
. start new supersegment

11: p p+ 1, sf (p) i
12: c (0, 0, 0), T 1

13: c T · ↵(i)c(i), T T · (1� ↵(i))

A modified front-to-back raycasting procedure for creating
supersegments is depicted in Alg. 1. The main difference
to standard raycasting is that color and opacity are not
composited over the whole ray but only within supersegments.
The segmentation criterion � (Line 4, see Sec. IV-B (Eq. 5)
for details) returns true if the old supersegment should be
terminated (Lines 11–12) and a new one should be started
(Lines 7–9). Additionally, the current supersegment is finalized

r
< 𝝲 ?

Rendering Volumetric Depth Images

▪ create frustums from segments
▪ geometric representation
▪ using RGBA+depth information
▪ camera configuration of original view

▪ rendered using OpenGL & GLSL
▪ alpha-blending with color and opacity from

the segments
▪ contribution of each frustum adjusted w.r.t.

length of view ray passing through it

▪ perfect results for original camera
configuration
▪ deviations increase with view angle 10VDI rendering of 1M frustums in 34ms per frame

raycasting 80M cells in 275ms per frame

Rendering Volumetric Depth Images

▪ create frustums from segments
▪ geometric representation
▪ using RGBA+depth information
▪ camera configuration of original view

▪ rendered using OpenGL & GLSL
▪ alpha-blending with color and opacity from

the segments
▪ contribution of each frustum adjusted w.r.t.

length of view ray passing through it

▪ perfect results for original camera
configuration
▪ deviations increase with view angle 10VDI rendering of 1M frustums in 34ms per frame

raycasting 80M cells in 275ms per frame

setup
▪scene and render parameters PR

generate new parameter candidates
while (new params PM) loop

obtain performance indicators
▪𝞽 ← generate intermediate representation M (PM)
▪𝞼 ← | M |
▪q ← assess rendering quality (M, PR)

identify best parameter setting
▪𝝰 ← utility evaluation 𝝼 (𝞼, q, 𝞽)
▪if 𝝰 < 𝝰’

𝝰’ ← 𝝰

P’M ← PM

end loop

Auto-Tuning IR

▪ automatically find best parameters PM for IR
▪ at example of volume visualization and VDIs

▪ overview: four phases

▪ setup

▪ specify analysis scenario as input for tuning

▪ generate new parameter candidates

▪ tuning loop until no further parameter values

▪ obtain performance indicators

▪ quantify performance in different regards

▪ identify best parameter setting

▪ condense performance value to single indicator

11

setup
▪scene and render parameters PR

generate new parameter candidates
while (new params PM) loop

obtain performance indicators
▪𝞽 ← generate intermediate representation M (PM)
▪𝞼 ← | M |
▪q ← assess rendering quality (M, PR)

identify best parameter setting
▪𝝰 ← utility evaluation 𝝼 (𝞼, q, 𝞽)
▪if 𝝰 < 𝝰’

𝝰’ ← 𝝰

P’M ← PM

end loop

Auto-Tuning IR

▪ setup

▪ data set & transfer function
▪ camera position and orientation

▪ generate new test parameters PM
▪ parameter ranges from prior experiments
▪ for VDIs PM = (𝝲, r):
▪ interrupt parameter 𝝲
▪ similarity of combined samples in ray space

▪ image resolution r
▪ number of rays traced (image space)

12

setup
▪scene and render parameters PR

generate new parameter candidates
while (new params PM) loop

obtain performance indicators
▪𝞽 ← generate intermediate representation M (PM)
▪𝞼 ← | M |
▪q ← assess rendering quality (M, PR)

identify best parameter setting
▪𝝰 ← utility evaluation 𝝼 (𝞼, q, 𝞽)
▪if 𝝰 < 𝝰’

𝝰’ ← 𝝰

P’M ← PM

end loop

Auto-Tuning IR

13

▪ obtain IR and performance indicators (for PM)
▪ three quantities: size 𝞼, time 𝞽, and quality q

▪ time 𝞽 to generate intermediate representation M
▪ amount of time (VDI) generation takes

▪ storage cost 𝞼
▪ size of representation compressed via bzip2

▪ rendering quality q
▪ create images with M …
▪ …and reference renderings (via volume raycasting)
▪ assess using image quality metric (PSNR)
▪ here: for rotation angles 10° - 60° (step size 10°)

setup
▪scene and render parameters PR

generate new parameter candidates
while (new params PM) loop

obtain performance indicators
▪𝞽 ← generate intermediate representation M (PM)
▪𝞼 ← | M |
▪q ← assess rendering quality (M, PR)

identify best parameter setting
▪𝝰 ← utility evaluation 𝝼 (𝞼, q, 𝞽)
▪if 𝝰 < 𝝰’

𝝰’ ← 𝝰

P’M ← PM

end loop

Auto-Tuning Intermediate
Representations (VDIs)
▪ identify best parameter setting

▪ utility function 𝝼 gives single performance value 𝝰
▪ based on data size 𝞼,
▪ rendering quality q,
▪ and IR generation time 𝞽

▪ we optimize q for target limited w.r.t.
▪ data size 𝞼 (e.g., 2 MB per IR)
▪ time 𝞽 (e.g., 1 second per IR)

▪ keep PM that yields the smallest 𝝰

14

Results

15

supernova (t=40)
(source: Kwan-Liu Ma, UC Davis)

zeiss
(source: Daimler AG)λ2

▪ three data sets
▪ supernova (two time steps from simulation, 432³)
▪ λ2 (vortex extraction from CFD simulation, 529³)
▪ zeiss (CT scan, 680³)

▪ VDIs are used as IR, processed on GPU
▪ generated via modified CUDA-based raycaster
▪ rendered via OpenGL / GLSL

supernova (t=20)

reference image resolution: 7682

tuning machine hardware : NVIDIA GTX980 / Intel Core i7-3820 / 16GB RAM

Results

15

supernova (t=40)
(source: Kwan-Liu Ma, UC Davis)

zeiss
(source: Daimler AG)λ2

▪ three data sets
▪ supernova (two time steps from simulation, 432³)
▪ λ2 (vortex extraction from CFD simulation, 529³)
▪ zeiss (CT scan, 680³)

▪ VDIs are used as IR, processed on GPU
▪ generated via modified CUDA-based raycaster
▪ rendered via OpenGL / GLSL

supernova (t=20)

reference image resolution: 7682

tuning machine hardware : NVIDIA GTX980 / Intel Core i7-3820 / 16GB RAM

Parameter Study - 
Supernova 40

16

supernova 40

𝞼:

q:

𝞽:

Parameter Study - 
Supernova 40
▪ parameter ranges for PM = (r, 𝝲)
▪ r: 160-768, step size 32
▪ 𝝲: 0.001-0.26, step size 0.004

▪ we consider size 𝞼, time 𝞽, and quality q
▪ larger r / smaller 𝝲 → higher q and 𝞼
▪ 𝞽 mostly influenced by r
▪ scales approximately linear with #rays

16

supernova 40

𝞼:

q:

𝞽:

Parameter Study - 
Supernova 40
▪ parameter ranges for PM = (r, 𝝲)
▪ r: 160-768, step size 32
▪ 𝝲: 0.001-0.26, step size 0.004

▪ we consider size 𝞼, time 𝞽, and quality q
▪ larger r / smaller 𝝲 → higher q and 𝞼
▪ 𝞽 mostly influenced by r
▪ scales approximately linear with #rays

▪ some parameter configurations better
▪ e.g., (r=768, 𝝲=0.25) vs. (r=608, 𝝲=0.11)
▪ approximately same data size …
▪ … but higher quality for (r=608, 𝝲=0.11)

16

supernova 40

𝞼:

q:

𝞽:

Parameter Study

▪ characteristics of VDIs are 
data-dependent
▪ supernova, λ2, and zeiss

differ significantly
▪ supernovas are similar
▪ 40 with higher complexity

▪ relative impact of r is fairly
similar …

▪ … but 𝝲 differs
▪ leaps for “boundaries” in

data

17

supernova 40

zeiss

supernova 20

λ2

Auto-Tuning

▪ reach best possible quality for
▪ limited size 𝞼
▪ between 0.036 MB and 4.666 MB

▪ limited IR generation time 𝞽
▪ between 0.111 s and 1.259 s

▪ increasing size limit…
▪ … higher quality
▪ … both r and 𝝲 increase

▪ increasing time budget …
▪ … higher quality
▪ … particularly r is increased
▪ … 𝝲 is relatively small 18

supernova 40

Auto-Tuning

▪ generally increasing
quality with
increasing budget …

▪ … yet individual
behavior heavily
depends on data

19

supernova 40

supernova 20

zeiss

λ2

size time

Auto-Tuning - Supernova 40

20
0.081 MB

𝝲: 0.077
r: 160

ref

0.41 MB

𝝲: 0.073
r: 352

2.074 MB

𝝲: 0.029
r: 736

Auto-Tuning - Supernova 40

20
0.081 MB

𝝲: 0.077
r: 160

ref

0.41 MB

𝝲: 0.073
r: 352

2.074 MB

𝝲: 0.029
r: 736

Auto-Tuning - Supernova 20

21
0.081 MB

𝝲: 0.085
r: 160

ref

0.41 MB

𝝲: 0.077
r: 320

2.074 MB

𝝲: 0.065
r: 608

Auto-Tuning - Supernova 20

21
0.081 MB

𝝲: 0.085
r: 160

ref

0.41 MB

𝝲: 0.077
r: 320

2.074 MB

𝝲: 0.065
r: 608

Auto-Tuning - λ2

22
0.081 MB

𝝲: 0.013
r: 160

ref

0.41 MB

𝝲: 0.009
r: 320

2.074 MB

𝝲: 0.009
r: 768

Auto-Tuning - λ2

22
0.081 MB

𝝲: 0.013
r: 160

ref

0.41 MB

𝝲: 0.009
r: 320

2.074 MB

𝝲: 0.009
r: 768

Auto-Tuning - Zeiss

23

0.081 MB

𝝲: 0.005
r: 160

ref

0.41 MB

𝝲: 0.001
r: 256

Auto-Tuning - Zeiss

23

0.081 MB

𝝲: 0.005
r: 160

ref

0.41 MB

𝝲: 0.001
r: 256

Transferability of Tuning Results

▪ tuning results for series of time steps
▪ two supernova time steps (20 and 40)
▪ apply tuning result PM = (r, 𝝲) to respective other time step

▪ parameter settings translate to a certain extent
▪ yet no guarantees can be given without explicit consideration
▪ target limit exceed by up ≈ 50% …
▪ when going from less complex 40 to 20

▪ generally depends on similarity of characteristics

▪ when optimizing for a time series
▪ a couple of characteristic time steps should be picked
▪ simplest approach: use most conservative parameter settings

for requested bounds 24

source γ r σ q τ

σtarget = 0.05 MB
40 (from 40) 0.245 160.0 0.053 21.911 0.077
20 (from 40) 0.245 160.0 0.044 16.316 0.075
40 (from 20) 0.221 160.0 0.064 25.695 0.077
20 (from 20) 0.221 160.0 0.052 16.633 0.078

σtarget = 0.08 MB
40 (from 40) 0.077 160.0 0.075 27.777 0.078
20 (from 40) 0.077 160.0 0.100 28.915 0.077
40 (from 20) 0.085 160.0 0.072 27.617 0.078
20 (from 20) 0.085 160.0 0.077 28.546 0.076

σtarget = 0.12 MB
40 (from 40) 0.073 192.0 0.109 28.845 0.098
20 (from 40) 0.073 192.0 0.169 30.026 0.099
40 (from 20) 0.081 192.0 0.106 28.731 0.098
20 (from 20) 0.081 192.0 0.117 29.691 0.099

σtarget = 0.18 MB
40 (from 40) 0.149 256.0 0.165 30.474 0.154
20 (from 40) 0.149 256.0 0.159 29.656 0.155
40 (from 20) 0.081 224.0 0.144 29.724 0.124
20 (from 20) 0.081 224.0 0.159 30.565 0.125

σtarget = 0.27 MB
40 (from 40) 0.149 320.0 0.257 31.714 0.216
20 (from 40) 0.149 320.0 0.249 30.381 0.216
40 (from 20) 0.081 288.0 0.237 31.393 0.184
20 (from 20) 0.081 288.0 0.262 31.782 0.183

σtarget = 0.41 MB
40 (from 40) 0.073 352.0 0.367 32.892 0.250
20 (from 40) 0.073 352.0 0.570 33.754 0.249
40 (from 20) 0.077 320.0 0.299 32.276 0.211
20 (from 20) 0.077 320.0 0.400 32.918 0.214

σtarget = 0.61 MB
40 (from 40) 0.073 448.0 0.593 34.429 0.371
20 (from 40) 0.073 448.0 0.922 35.208 0.371
40 (from 20) 0.077 384.0 0.431 33.341 0.286
20 (from 20) 0.077 384.0 0.576 34.001 0.286

σtarget = 0.92 MB
40 (from 40) 0.069 544.0 0.885 35.617 0.517
20 (from 40) 0.069 544.0 1.520 36.464 0.516
40 (from 20) 0.077 480.0 0.674 34.783 0.417
20 (from 20) 0.077 480.0 0.901 35.309 0.415

Limitations and Directions For Future Work

▪ IRs can be tuned toward certain goals …
▪ … but no guarantees can be made this way
➡ particularly for a time series: base on collection of characteristic time steps

▪ this work: storage space and computation time budgets considered
➡ also consider other factors of interest (e.g., energy consumption)

▪ even if IR is flexibly tunable, the range of achievable results is limited
➡ auto-tuning could consider different IR, e.g., switch to sparse representations

▪ this work: predefined set of PM (based on a priori experiments)
▪ collection of results data can easily be distributed and cached in advance
➡ impact of arbitrary utility functions 𝝼 can be evaluated efficiently
▪ fixed 𝝼: integrated, adaptive scheme could be faster / more accurate 25

Conclusion

▪ IR for hybrid in-situ visualization
▪ decrease data size
▪ maintain flexibility for a posteriori exploration

▪ IR generation inherently involves a trade-off
▪ tunable via parameters for most implementations of IR

▪ goal of this work: optimize generation of IR
▪ analysis and quantification of the impact of IR parameters
▪ auto-tuning for different constraints (like time or data size)

▪ many directions for future work
▪ time series / ensembles, other factors of interest, switching between IRs, dynamic tuning, …
▪ also consider other application domains beyond volume / scientific visualization 26

Data Size,
Generation Time,

…
Quality,

Flexibility,
… PM

27

Thank You!

